Sourcecode: Example4d.c



Sourcecode: Example4.c

] COLLABORATORS
TITLE :
Sourcecode: Example4.c
ACTION NAME DATE SIGNATURE
WRITTEN BY February 12, 2023

REVISION HISTORY

NUMBER

DATE DESCRIPTION

NAME




Sourcecode: Example4.c iii

Contents

1 Sourcecode: Exampled.c 1
1.1 Exampled.c . . . . . o e 1




Sourcecode: Example4.c

Chapter 1

Sourcecode: Example4.c

1.1

/ %
/ *
/ *
/ *
/ *
/ *
/ *
/ *
/ *
/ *
/ *
/ %
/ *
/ *
/ *

Exampled.c
/~k*k~k*k*k*******k*k*k~k******~k*k*k~k********k*k~k*k*k**********************/
x/
Amiga C Encyclopedia (ACE) Amiga C Club (ACC) =/
———————————————————————————————————————————— */
*/
Manual: AmigaDOS Amiga C Club */
Chapter: Introduction Tulevagen 22 */
File: Exampled.c 181 41 LIDINGO */
Author: Anders Bjerin SWEDEN */
Date: 93-09-24 */
Version: 1.0 */
*/
Copyright 1993, Anders Bjerin - Amiga C Club (ACC) */
x/
Registered members may use this program freely in their =/
own commercial/noncommercial programs/articles. */
*/

/ %

/***********************************************************/

/* This example contains a useful function which converts hard to
/* use BSTR (BCPL stings) into normal easy to use C strings. This
/+ example 1is not directly runnable and must instead be linked

/+ together with some other program.

/+ Include the dos library definitions: =*/

#include <dos/dosextens.h>

/+* Now we include the necessary function prototype files: =/
#include <clib/dos_protos.h> /* General dos functions...
#include <stdio.h> /* Std functions [printf ()] =«/
#include <stdlib.h> /* Std functions [exit ()] */
/* Set name and version number: =/

UBYTE *version = "$VER: AmigaDOS/AmigaDOS/Exampled 1.0";

*/
*/
*/
*/




Sourcecode: Example4.c

/+ Declare the function: x/
void BSTRtoC
(
BSTR string_ bstr,
UBYTE » string_c,
int length_c
)

/* Converts a BCPL string (BSTR) into a normal C string: =/
void BSTRtoC
(

BSTR string_bstr, /+ The BSTR (BCPL string) */
UBYTE *string_c, /* Pointer to a normal C string */
int length_c /* Maximum length of the C string =/

/* Temporary string pointer: =/
UBYTE xstring_ptr;

/* The length of the BSTR string: (A BSTR can not be */
/* longer than 255 characters so we can use a unsigned =/
/* byte to store the length in.) x/
UBYTE length_bstr;

/+ The number of characters that will be copied: */
int length;

/% Simple loop variable: x/
int loop;

/* Since we have to put a NULL sign at the end of the =/

/+ C string we can only store "length_c" - 1 number of =/
/+ characters. Therefore we have to reduce the length «/
/* by one: */

length_c——;

/* Convert the BSTR into a normal C pointer =/
/* to a BCPL string: (Are you with me?) *x/
string _ptr = (UBYTE %) BADDR( string_bstr );

/* Get the length of the BCPL string: (A BCPL string «*/
/+ does not contain a NULL sign at the end, but uses «/
/* instead the first byte to tell how many characters =/

/* the string contains. A BCPL string (BSTR) can */
/* therefore not contain more than 255 characters */
/* (0 — 255 = one byte). */

length_bstr = string_ptr[ 0 ];

/+ Get the smallest value: (If the C string is smallest «/
/+ we should of course not copy more than can be fitted «/
/* in the C string. On the other hand, if the BCPL */




Sourcecode: Example4.c

3/3

/* string is smaller we should of course not copy more
/+ characters than there actually exist in the BCPL

/* string. Consequently we should only use the smallest
/+ value: (If you have included the header file "math.h"
/* you can equally well use the macro "min()".)

*/
*/
*/
*/
*/

length = length_c <= length_bstr ? length_c : length_bstr;

/+ Convert the BCPL string into a C string: =/
for( loop = 1; loop <= length; loopt++ )
string_c[ loop - 1] = string_ptr[ loop 1;

/+ Note that the loop starts with 1 and not 0 as normal!
/+ The first byte in a BCPL string contains the lenght
/+ of the string, and since we don’t want to copy that
/* value into the C string we start one byte later. We
/* must then also change the "<" sign into a "<=" since
/* we want to copy all characters including the last

/* one since that also contains a character. Normal C

/* strings ends with a NULL, but BSTRs do not.

/* Finally we have to put a NULL sign at the =/
/* end of the C string: */
string c[ loop - 1] = NULL;

*/
*/
*/
*/
*/
*/
*/
*/




	Sourcecode: Example4.c
	Example4.c


